Introduction to Robotics 

Instructor: Stefanos Nikolaidis (nikolaid at usc dot edu)

TAs: TBD

Content Contributors: Hejia Zhang, David Millard, Aravind Kuramaguru, Gautam Salhotra

Lectures: Mon / Wed 2:00 - 3:50 WPH B27

Office Hours: Mon 4pm - 5pm

Course Description: This class will introduce students to the fundamental questions in robotics: what are good models of the world and how to integrate them reliably into the planning of deployed robotic systems physically interacting with the environment. All these problems arise from the uncertainty due to sensor noise, modeling limitations, approximations in algorithmic computations and inherent unpredictability of action outcomes. The course will explore probabilistic techniques that allow robots to act reliably and exhibit a variety of different behaviors in spite of different sources of uncertainty. We will first cover algorithms for state estimation in both known and unknown environments. We will then explore functional aspects of robot’s interaction with the world, such as the geometry of configuration spaces and manipulation planning in these spaces. We will wrap up the course by exploring the interplay of inference and planning and its applications in robot autonomy and human-robot interaction.

Learning Objectives: In this course, you will be introduced to probabilistic techniques that allow state estimation, manipulation and planning in robotics. By the end of this course you should be able to:

Prerequisites: Students are required to have a solid background of probability theorylinear algebra and calculus. Programming knowledge of Python is also required. 

Reading Material: There is no required textbook for this course. The lecture material is available online. Much of the lecture material is taken from these books:

The assignments and final exam will be based only on material covered in the lectures. 

Grading:

Component Percentage 
Lab Assignments  40% 
HW Assignments  30% 
Final Exam 30% 

Assessment of Assignments

Note: Regardless of the grading system, you are required to submit all homework assignments,  lab assignments and take the final exam to receive a passing grade for the class. 

Tentative Schedule

Date Lecture Topic Assignment (Released) 
Readings Notes
Mon 
Aug 21 
Introduction  Slides
Wed 
Aug 23 
Matrix Algebra Refresher  SS Appendix A  Slides
Mon 
Aug 28
Probability Theory  HW (Math Fundamentals)  RN Ch. 13-14  Slides
Wed 
Aug 30 
Python / ROS Tutorial  Lab 1 
Mon 
Sep 4 
Labor day (no class) 
Wed 
Sep 6 
Bayesian Networks  Slides
Mon 
Sep 11 
Bayesian Filters  TBF Ch. 2, 3.1-3.2.3  Slides
Wed 
Sep 13 
Kalman Filters and EKF  HW2 (KF/EKF)  TBF Ch. 3.3.1-3.3.3 Slides
Mon 
Sep 18 
Particle Filters  TBF Ch. 4.3.1-4.3.2  Slides
Wed 
Sep 20 
Motion Models and Sensor Models  TBF Ch. 5.3.2, 5.4.2, 6.3.1, 6.6.2 Slides
Mon 
Sep 25 
10  Localization and Mapping  Ch. 7.4.1, 7.4.2, 7.5.1, 9.2 - excluding 9.2.1  Slides
Wed 
Sep 27
11  Midterm review  Slides
Mon 
Oct 2 
12  AIKIDO Tutorial  Lab 2 (Localization)  AIKIDO (Personal Robotics Lab, University of Washington)
Wed 
Oct 4 
13  Mathematical Programming  Slides
Mon 
Oct 9
14  Configuration Spaces  CL 3.1,3.2, 3.5.1  Slides
Wed 
Oct 11 
15  Kinematic Transformations  CL 3.6-3.8  Slides
Mon 
Oct 16 
16  Inverse Kinematics  HW3 (FK/IK)  Slides
Wed 
Oct 18 
17  Sampling-based 
Motion Planning I 
CL 7.1.1, 7.2.2  Slides
Mon 
Oct 23 
18  Sampling-based 
Motion Planning II 
HW4 (RRT)  CL 7.3.3, LA 7.3.1  Slides
Wed 
Oct 25 
19  Task Space Regions  Task Space Regions Slides
Mon 
Oct 30
20  Special Topics in Robotics 
Wed 
Nov 1 
21  Linear Dynamical Systems  Slides
Mon 
Nov 6 
22  Special Topics in Robotics  Lab 3 (Motion Planning)
Wed 
Nov 8 
23  Special Topics in Robotics 
Mon 
Nov 13 
25  Dynamics  SS Ch. 7.1.1 Slides
Wed 
Nov 15 
26  Non-Linear Control SS Ch. 8.6.2, Appendix C3 Slides
Mon 
Nov 20 
27  Acting Under Uncertainty  Lab 4 (Task Space Regions) Risk-aware planning Slides
Wed 
Nov 22 
Thanksgiving Holiday (no class) 
Mon 
Nov 27 
28  Final Review  Slides
Wed 
Nov 29 
29  Q & A 

Additional Policies: Please read the statement on academic conduct and student support systems.